最終更新日:2024/07/30

(number theory, analytic number theory, uncountable) The function ζ defined by the Dirichlet series 𝜁(s)=∑ₙ₌₁ ᪲1/(nˢ)=1/(1ˢ)+1/(2ˢ)+1/(3ˢ)+1/(4ˢ)+⋯, which is summable for points s in the complex half-plane with real part > 1; the analytic continuation of said function, being a holomorphic function defined on the complex numbers with pole at 1.

正解を見る

Riemann zeta function

編集履歴(0)
元となった辞書の項目

Riemann zeta function

Dictionary quizzes to help you remember vocabulary

編集履歴(0)

ログイン / 新規登録

 

アプリをダウンロード!
DiQt

DiQt(ディクト)

無料

★★★★★★★★★★