最終更新日:2024/08/03

(mathematical logic) A theorem stating that, if a countable first-order theory has an infinite model, then for every infinite cardinal number κ it has a model of size κ. The result implies that first-order theories are unable to control the cardinality of their infinite models, and that no first-order theory with an infinite model can have a unique model up to isomorphism.

正解を見る

Löwenheim-Skolem theorem

編集履歴(0)

Dictionary quizzes to help you remember vocabulary

編集履歴(0)

ログイン / 新規登録

 

アプリをダウンロード!
DiQt

DiQt(ディクト)

無料

★★★★★★★★★★