最終更新日:2023/07/13
(解説あり)(ウ)に最もよくあてはまる選択肢を 1 つ選べ.
ニューラルネットワークは高い表現力を持つ反面,過学習をしやすいという性質を持つため,それを改善させる方法が多数考案されている.例えば,学習の際に一部のノードを無効化する(ア),一部の層の出力を正規化する(イ),データの水増しをしてデータの不足を補う(ウ),パラメータのノルムにペナルティを課す(エ)などがそれに当たる.
編集履歴(0)
(解説あり)(ウ)に最もよくあてはまる選択肢を 1 つ選べ.
ニューラルネットワークは高い表現力を持つ反面,過学習をしやすいという性質を持つため,それを改善させる方法が多数考案されている.例えば,学習の際に一部のノードを無効化する(ア),一部の層の出力を正規化する(イ),データの水増しをしてデータの不足を補う(ウ),パラメータのノルムにペナルティを課す(エ)などがそれに当たる.