Nader's Raiders struck again last week. This time their target was the Federal Food and Drug Administration, which they tore apart in what may well be the most devastating critique of a U.S. Government agency ever issued.
In four cases, appropriate shunt communications meant that the morpho-anatomical conditions were available for the presence of a fetofetal transfusion syndrome.
Across Japan, technology companies and private investors are racing to install devices that until recently they had little interest in: solar panels. Massive solar parks are popping up as part of a rapid build-up that one developer likened to an explosion.
There is a uniform status quo almost with just a few exceptions of a handful of mathematicians around the world. Most people accept the “infinite choice, infinite decimals” approach to real numbers, and the justification that has been created to substantiate this, and to overcome some of the difficulties that I have shown you is through an elaborate axiomatic framework. Mathematicians are not stupid! They realize that this theory is dubious, and so what they have done is they have created a rather elaborate axiomatic framework. And that axiomatic framework is something that we can study in set theory and logic; and its purported aim is to create a framework for mathematics; but its initial aims were very much directed towards solving the problems, overcoming the difficulties with real numbers as infinite decimals. Prominent amongst these axioms is this Axiom of Choice! The Axiom of Choice manifests itself in mathematics in many ways; but its primary role — OK — its primary role is exactly here at the level of infinite decimals and real numbers. It essentially asserts, as a matter of faith or belief, that it is possible to choose an infinite number of digits arbitrarily and independently, and that a legitimate mathematical object results. This is the key philosophical point. Are we, or are we not, in a position to be able to specify a first digit, a second digit, a third digit, a fourth digit, and so on to infinity? And are we allowed to call that specification a new mathematical object, a real number? The Axiom of Choice says that “Yes we are!”, so it is a statement of belief and its primary objective is to allow the building of this real number system.