最終更新日:2022/12/23
例文
[1]
Again,
then,
to
take
a
fresh
start,
a
number
is
called
heteromecic
if
its
representation,
when
graphically
described
in
a
plane,
is
quadrilateral
and
quadrangular,
to
be
sure,
but
the
sides
are
not
equal
to
one
another,
nor
is
the
length
equal
to
the
breadth,
but
they
differ
by
1.
Examples
are
2,
6,
12,
20,
30,
42,
and
so
on,
for
if
one
represents
them
graphically
he
will
always
construct
them
thus:
1
times
2
equals
2,
2
times
3
equals
6,
3
times
4
equals
12,
and
the
succeeding
ones
similarly,
4
times
5,
5
times
6,
6
times
7,
7
times
8,
and
thus
indefinitely,
provided
only
that
one
side
is
greater
than
the
other
by
1
and
by
no
other
number.
復習用の問題
[1] Again, then, to take a fresh start, a number is called heteromecic if its representation, when graphically described in a plane, is quadrilateral and quadrangular, to be sure, but the sides are not equal to one another, nor is the length equal to the breadth, but they differ by 1. Examples are 2, 6, 12, 20, 30, 42, and so on, for if one represents them graphically he will always construct them thus: 1 times 2 equals 2, 2 times 3 equals 6, 3 times 4 equals 12, and the succeeding ones similarly, 4 times 5, 5 times 6, 6 times 7, 7 times 8, and thus indefinitely, provided only that one side is greater than the other by 1 and by no other number.
項目の編集設定
- 項目の編集権限を持つユーザー - すべてのユーザー
- 項目の新規作成を審査する
- 項目の編集を審査する
- 項目の削除を審査する
- 重複の恐れのある項目名の追加を審査する
- 項目名の変更を審査する
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1
例文の編集設定
- 例文の編集権限を持つユーザー - すべてのユーザー
- 例文の削除を審査する
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1
問題の編集設定
- 問題の編集権限を持つユーザー - すべてのユーザー
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1