復習用の問題
Today, invariant theory is often understood as a branch of representation theory, algebraic geometry, commutative algebra, and algebraic combinatorics. Each of these four disciplines has roots in nineteenth-century invariant theory. […] In modern terms, the basic problem of invariant theory can be categorized as follows. Let V be a K-vector space on which a group G acts linearly. In the ring of polynomial functions K[V] consider the subring K[V]ᴳ consisting of all polynomial functions on V which are invariant under the action of the group G. The basic problem is to describe the invariant ring K[V]ᴳ. In particular, we would like to know whether K[V]ᴳ is finitely generated as a K-algebra and, if so, to give an algorithm for computing generators.
- 項目の編集権限を持つユーザー - すべてのユーザー
- 項目の新規作成を審査する
- 項目の編集を審査する
- 項目の削除を審査する
- 重複の恐れのある項目名の追加を審査する
- 項目名の変更を審査する
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1
- 例文の編集権限を持つユーザー - すべてのユーザー
- 例文の削除を審査する
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1
- 問題の編集権限を持つユーザー - すべてのユーザー
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1