最終更新日
:2024/07/31
Lebesgue integral
noun
(mathematical
analysis,
singular
only,
definite
and
countable)
An
integral
which
has
more
general
application
than
that
of
the
Riemann
integral,
because
it
allows
the
region
of
integration
to
be
partitioned
into
not
just
intervals
but
any
measurable
sets
for
which
the
function
to
be
integrated
has
a
sufficiently
narrow
range.
(Formal
definitions
can
be
found
at
PlanetMath).
意味(1)
(mathematical
analysis,
singular
only,
definite
and
countable)
An
integral
which
has
more
general
application
than
that
of
the
Riemann
integral,
because
it
allows
the
region
of
integration
to
be
partitioned
into
not
just
intervals
but
any
measurable
sets
for
which
the
function
to
be
integrated
has
a
sufficiently
narrow
range.
(Formal
definitions
can
be
found
at
PlanetMath).
復習用の問題
(mathematical analysis, singular only, definite and countable) An integral which has more general application than that of the Riemann integral, because it allows the region of integration to be partitioned into not just intervals but any measurable sets for which the function to be integrated has a sufficiently narrow range. (Formal definitions can be found at PlanetMath).
正解を見る
Lebesgue integral
The Lebesgue integral is a fundamental concept in mathematical analysis.
正解を見る
The Lebesgue integral is a fundamental concept in mathematical analysis.
English Dictionary
項目の編集設定
- 項目の編集権限を持つユーザー - すべてのユーザー
- 項目の新規作成を審査する
- 項目の編集を審査する
- 項目の削除を審査する
- 重複の恐れのある項目名の追加を審査する
- 項目名の変更を審査する
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1
例文の編集設定
- 例文の編集権限を持つユーザー - すべてのユーザー
- 例文の削除を審査する
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1
問題の編集設定
- 問題の編集権限を持つユーザー - すべてのユーザー
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1