最終更新日
:2024/08/06
Gibbard-Satterthwaite theorem
name
A
theorem
dealing
with
deterministic
ordinal
electoral
systems
that
choose
a
single
winner,
stating
that
for
every
voting
rule,
one
of
the
following
three
things
must
hold:
(i)
the
rule
is
dictatorial,
i.e.
there
exists
a
distinguished
voter
who
can
choose
the
winner;
or
(ii)
the
rule
limits
the
possible
outcomes
to
two
alternatives
only;
or
(iii)
the
rule
is
susceptible
to
tactical
voting:
in
certain
conditions
some
voter's
sincere
ballot
may
not
defend
their
opinion
best.
意味(1)
A
theorem
dealing
with
deterministic
ordinal
electoral
systems
that
choose
a
single
winner,
stating
that
for
every
voting
rule,
one
of
the
following
three
things
must
hold:
(i)
the
rule
is
dictatorial,
i.e.
there
exists
a
distinguished
voter
who
can
choose
the
winner;
or
(ii)
the
rule
limits
the
possible
outcomes
to
two
alternatives
only;
or
(iii)
the
rule
is
susceptible
to
tactical
voting:
in
certain
conditions
some
voter's
sincere
ballot
may
not
defend
their
opinion
best.
復習用の問題
A theorem dealing with deterministic ordinal electoral systems that choose a single winner, stating that for every voting rule, one of the following three things must hold: (i) the rule is dictatorial, i.e. there exists a distinguished voter who can choose the winner; or (ii) the rule limits the possible outcomes to two alternatives only; or (iii) the rule is susceptible to tactical voting: in certain conditions some voter's sincere ballot may not defend their opinion best.
正解を見る
Gibbard-Satterthwaite theorem
The Gibbard-Satterthwaite theorem is a fundamental result in social choice theory.
正解を見る
The Gibbard-Satterthwaite theorem is a fundamental result in social choice theory.
English Dictionary
項目の編集設定
- 項目の編集権限を持つユーザー - すべてのユーザー
- 項目の新規作成を審査する
- 項目の編集を審査する
- 項目の削除を審査する
- 重複の恐れのある項目名の追加を審査する
- 項目名の変更を審査する
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1
例文の編集設定
- 例文の編集権限を持つユーザー - すべてのユーザー
- 例文の削除を審査する
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1
問題の編集設定
- 問題の編集権限を持つユーザー - すべてのユーザー
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1