最終更新日:2022/12/24

More precisely, Xⁿ⊂ℙᴺ is a Severi variety if and only if ℙᴺ=ℙ(𝔍), where 𝔍 is the Jordan algebra of Hermitian (3 × 3)-matrices over a composition algebra 𝔄, and X corresponds to the cone of Hermitian matrices of rank <1 (in that case SX corresponds to the cone of Hermitian matrices with vanishing determinant; cf. Theorem 4.8). In other words, X is a Severi variety if and only if X is the “Veronese surface” over one of the composition algebras over the field K (Theorem 4.9).

編集履歴(0)

Sentence quizzes to help you learn to read

編集履歴(0)

ログイン / 新規登録

 

アプリをダウンロード!
DiQt

DiQt(ディクト)

無料

★★★★★★★★★★