復習用の問題

More precisely, Xⁿ⊂ℙᴺ is a Severi variety if and only if ℙᴺ=ℙ(𝔍), where 𝔍 is the Jordan algebra of Hermitian (3 × 3)-matrices over a composition algebra 𝔄, and X corresponds to the cone of Hermitian matrices of rank <1 (in that case SX corresponds to the cone of Hermitian matrices with vanishing determinant; cf. Theorem 4.8). In other words, X is a Severi variety if and only if X is the “Veronese surface” over one of the composition algebras over the field K (Theorem 4.9).

英語 - 英語

項目の編集設定
  • 項目の編集権限を持つユーザー - すべてのユーザー
  • 項目の新規作成を審査する
  • 項目の編集を審査する
  • 項目の削除を審査する
  • 重複の恐れのある項目名の追加を審査する
  • 項目名の変更を審査する
  • 審査に対する投票権限を持つユーザー - 編集者
  • 決定に必要な投票数 - 1
例文の編集設定
  • 例文の編集権限を持つユーザー - すべてのユーザー
  • 例文の削除を審査する
  • 審査に対する投票権限を持つユーザー - 編集者
  • 決定に必要な投票数 - 1
問題の編集設定
  • 問題の編集権限を持つユーザー - すべてのユーザー
  • 審査に対する投票権限を持つユーザー - 編集者
  • 決定に必要な投票数 - 1
編集ガイドライン

ログイン / 新規登録

 

アプリをダウンロード!
DiQt

DiQt(ディクト)

無料

★★★★★★★★★★