G検定模擬試験set1 - 未解答
(解説あり)(ア)にあてはまらない選択肢を 1 つ選べ.
ニューラルネットワークには(ア)などの多くのハイパーパラメータが存在し,これらの値が精度に大きな影響を与える.ハイパーパラメータのチューニング方法としては,パラメータの候補値を指定し,それらの組み合わせを調べる(イ)などがある.また,近年は,ハイパーパラメータを含め最適化問題とする(ウ)が効率的なチューニング方法として注目をあびている.
(ウ)に最もよくあてはまる選択肢を 1 つ選べ.
活性化関数とは,ニューロンの出力に何らかの非線形な変数を加える関数である.単純パーセプトロンの出力層では(ア)が用いられ,ニューラルネットワークの中間層では,はじめ(イ)などの正規化の機能を持つ関数が好まれた.しかし現在では,誤差逆伝播で勾配が消失しやすいという問題から,中間層では勾配消失問題の影響を抑えられ,かつ簡単な(ウ)などが用いられている.また,出力層では出力の総和が 1 になるため確率的な解釈が可能になる(エ)がよく用いられる.
(ウ)に最もよくあてはまる選択肢を 1 つ選べ.
強化学習では,行動を学習する(ア)と(ア)が行動を加える対象である(イ)を考え,行動に応じて(イ)は(ア)に状態と(ウ)を返す.行動と状態/(ウ)の獲得を繰り返し,最も多くの(ウ)をもらえるような方策を得ることが強化学習の目的である.
(ウ)に最もよくあてはまる選択肢を 1 つ選べ.
現在の教師あり学習は,与えられたデータがどの分類に当てはまるのかを識別する(ア)と,様々な関連性のある過去の数値から未知の数値を予測する(イ)という二つに分類される.(ア)を用いることで,(ウ)のようなことができる.また(イ)を用いることで,(エ)のようなことができる.
2012 年に開催された一般物体認識のコンテスト ILSVRC(ImageNet Large Scale Visual Recognition Challenge)において,深い構造を持つ CNN が,従来手法の分類性能を大幅に上回って以来,ディープラーニングが画像認識に盛んに用いられるようになった.ディープラーニングの画像認識への応用先として正しい組み合わせを選択肢から 1 つ選べ.
(カ)に最もよくあてはまる選択肢を 1 つ選べ.
ディープラーニングを含めて機械学習において精度の高い学習をするためには,観測データの適切な前処理が必須である.異なるスケールの特徴量を同時に扱えるようにするために,平均を 0 に分散を 1 に規格化する(ア)や,特徴量の線形結合からデータ内の分散が大きくなるような特徴量を得る(イ)などは広く利用されている.また,画像処理の分野においては,減算正規化と除算正規化の処理を行う(ウ)などが前処理として利用され,(エ)などの画像処理に特化したライブラリで行うことができる.また,自然言語処理の分野においては,文章に単語が含まれているかどうかを考えてテキストデータを数値化する(オ)や文章に含まれる単語の重要度を特徴量とする(カ)などがある.
(イ)に最もよくあてはまる選択肢を 1 つ選べ.
ニューラルネットワークには様々なモデルがあり,タスクによって適切な選択をする必要がある.例えば,画像を扱う際には(ア),自然言語処理などの系列データには(イ)がよく使われる.他にも次元削減には(ウ),画像生成には(エ)などが用いられる.
(イ)に最もよくあてはまる選択肢を 1 つ選べ.
現在の教師あり学習は,与えられたデータがどの分類に当てはまるのかを識別する(ア)と,様々な関連性のある過去の数値から未知の数値を予測する(イ)という二つに分類される.(ア)を用いることで,(ウ)のようなことができる.また(イ)を用いることで,(エ)のようなことができる.
(ウ)に最もよくあてはまる選択肢を 1 つ選べ.
自己符号化器はニューラルネットワークによる(ア)の代表的な応用であり,出力が入力に近づくようにニューラルネットを学習させる.主に(イ)のために利用されることが多く,活性化関数に恒等写像を用いた場合の 3 層の自己符号化器は(ウ)と同様の結果を返す.自己符号化器を多層化すると,ディープニューラルネット同様に勾配消失問題が生じるため,複雑な内部表現を得ることは困難であった.この問題に対して 2006 年頃に(エ)らは,単層の自己符号化器に分割し入力層から繰り返し学習させる(オ)を積層自己符号化器に適用することで,汎用的な自己符号化器の利用を可能とした.また,自己符号化器の代表的な応用例として(カ)がある.
(ウ)に最もよくあてはまる選択肢を 1 つ選べ.
画像生成とは,何もない状態,もしくはある入力値に応じて目標の画像を生成する技術である.今最も利用されている画像生成手法は,GAN という生成敵対ネットワークである.特に,あるランダムな数値の入力値をもとに画像生成を行う DC(ア)やある文章から画像を生成する Attention(ア)などが有名である.このネットワークは(イ)と(ウ)から構成されており,(イ)は(エ)を騙すような画像を出力し,(ウ)は(イ)から出力された画像と本物の画像とを分類するようにそれぞれ学習する.このように学習することで,(イ)は適切な画像を出力することが可能となる.