27,474解答

G検定模擬試験set1 - 未解答

    人工知能が進化するにつれ,人々の生活が格段に豊かになることが期待される一方で,悪用や乱用で公共の利益を損なう可能性も否定できない.人工知能という高度な専門的職業に従事するものとして,その社会における責任を自覚し,社会と対話をしていく行動が必要となる.一般社団法人人工知能学会は,9 つの指針を定めた.選択肢から,この指針に含まれるものを 1 つ選べ.

    (イ)に最もよくあてはまる選択肢を 1 つ選べ.

    畳み込みニューラルネットワークの手法について扱う.(ア)は 1998 年に提案された,現在広く使われている CNN の元となるモデルであり,初めて多層 CNN に誤差逆伝播法を適用した手法である.2012 年に提案された(イ)は,画像認識のコンペティション ILSVRC で他手法に圧倒的な差をつけて優勝し,画像認識におけるディープラーニング活用の火付け役となった.しかし,一般に CNN は層を深くすると,パラメータ数が膨大となり学習が困難になってしまう傾向があった.層が深くなってもうまく学習を行うことができるモデルとして,ILSVRC2015 において多くの部門でトップの成績を収めた(ウ)がある.(ウ)は出力を入力と入力からの差分の和で表現したニューラルネットワークモデルである.

    (解説あり)(イ)に最もよくあてはまる選択肢を 1 つ選べ.

    AI が実世界における抽象概念を理解し,知識処理を行う上では,(ア) を通じた高レベルの身体知を獲得し,次に (イ)を通じて言語の意味理解を促し,抽象概念・知識処理へと至るのではないかということが議論されている.

    (ア)に最もよくあてはまる選択肢を 1 つ選べ.

    現在の教師あり学習は,与えられたデータがどの分類に当てはまるのかを識別する(ア)と,様々な関連性のある過去の数値から未知の数値を予測する(イ)という二つに分類される.(ア)を用いることで,(ウ)のようなことができる.また(イ)を用いることで,(エ)のようなことができる.

    (イ)に最もよくあてはまる選択肢を 1 つ選べ.

    ニューラルネットワークの学習は,損失関数(コスト関数)の最適化により行われる.そして,その損失関数は学習の目的に応じて決定する.よく使われる損失関数として,回帰問題には(ア),分類問題には(イ)がある.また分布を直接学習する際には(ウ)が用いられることもある.さらに,損失関数にパラメータの二乗ノルムを加えると(エ)となる.

    (ウ)に最もよくあてはまる選択肢を 1 つ選べ.

    畳み込みニューラルネットワークの(ア)のパラメータ数は(イ)と比較して極めて少ない.これは(ウ)によって(エ)ため,パラメータ数が減り,計算量が少なくなるためである.

    (イ)に最もよくあてはまる選択肢を 1 つ選べ.

    画像キャプションとは,ある画像からそこに写っているものの説明を生成する,画像処理と自然言語処理の融合分野である.キャプションは,対象となる画像を(ア)に入力し,そこから得られた特徴を(イ)に入力することで生成することが可能である.

    (ウ)に最もよくあてはまる選択肢を 1 つ選べ.

    強化学習では,行動を学習する(ア)と(ア)が行動を加える対象である(イ)を考え,行動に応じて(イ)は(ア)に状態と(ウ)を返す.行動と状態/(ウ)の獲得を繰り返し,最も多くの(ウ)をもらえるような方策を得ることが強化学習の目的である.

    ニューラルネットワークの学習には勾配降下法が用いられる.勾配降下法の手順を適切な順番に並べ替えたとき,2番目になるのはどれか.

    A.重みとバイアスを初期化する. B.誤差を減らすように重み(バイアス)を修正する. C.最適な重みやバイアスになるまで繰り返す. D.ネットワークの出力と正解ラベルとの誤差を計算する. E.データ(ミニバッチ)をネットワークに入力し出力を得る.

    (オ)に最もよくあてはまる選択肢を 1 つ選べ.

    機械学習の手法は学習の枠組みに応じて主に三つに分類することができる. (ア)は入力とそれに対する出力のペアの集合を学習用データとする手法で,(イ)などが(ア)に含まれる.(ウ)は入力の集合だけから学習を行う手法であり,(エ)などが(ウ)に含まれる.最後に(オ)は,最終結果または連続した行動の結果に対して報酬を与え,報酬ができるだけ大きくなるような行動を探索する手法である.

loading!!

loading
続きを表示する
再読み込み

ログイン / 新規登録

 

アプリをダウンロード!
DiQt

DiQt(ディクト)

無料

★★★★★★★★★★