G検定模擬試験set1 - 未解答
(イ)に最もよくあてはまる選択肢を 1 つ選べ.
ディープラーニングのモデルは,確定的モデルと確率的モデルに分類することができる.これらのモデルの例として,確定的モデルに(ア)や確率的モデルに(イ)がある.
(解説あり)生成モデル(generative model)の一つであり,生成ネットワークと識別ネットワークの 2 つのネットワークを対抗させるように学習させることで,得られる生成モデル(generative model)の名称として最も適切なものを 1 つ選べ.
(ウ)に最もよくあてはまる選択肢を 1 つ選べ.
現在,人工知能研究は抽象概念や知識理解に辿り着くために大きく分けて三つの路線を辿っている.この三つの路線は,とりわけある企業や大学によって研究が進められている. ・言語データによる RNN や映像データからの概念・知識理解を目指す(ア)路線 ・実世界を対象に研究を進め,知識理解を目指す(イ)路線 ・オンライン空間上でできることをターゲットにするして,知識理解を目指す(ウ)路線
(解説あり)(イ)に最もよくあてはまる選択肢を 1 つ選べ.
AI が実世界における抽象概念を理解し,知識処理を行う上では,(ア) を通じた高レベルの身体知を獲得し,次に (イ)を通じて言語の意味理解を促し,抽象概念・知識処理へと至るのではないかということが議論されている.
(ア)に最もよくあてはまる選択肢を 1 つ選べ.
画像認識のモデルとしてResNet がある.これは求めたい関数と入力との差である(ア)を学習するようにしたことで深いネットワークの学習を容易にした.
(ア)に最もよくあてはまる選択肢を 1 つ選べ.
(ア)はディープラーニングにおける重要な課題の一つであり,学習済みのディープニューラルネットモデルを欺くように人工的に作られたサンプルのことである.サンプルに対して微小な摂動を加えることで,作為的にモデルの誤認識を引き起こすことができる.
(オ)に最もよくあてはまる選択肢を 1 つ選べ.
機械が試行錯誤することで,取るべき最善の行動を決定する問題を扱うことができる学習方法を(ア)という.(ア)はボードゲームや自動運転,またロボットの歩行動作などに活用されている.代表的なアルゴリズムに (イ)があげられる.(ア)の課題として,主に(ウ)や(エ)などが挙げられる.理論的には無限に学習するが,実世界では全てが限られている.ロボットの場合,無限の試行を繰り返すことができず,損耗し,実験の続行が困難になる.そこで人間側がタスクを上手く切り分けてやさしいタスクからの学習をすることが期待される.また(エ)に関して,例として,2 体のロボット同士で学習を開始させようとすると,お互いに初期状態であるタスクについての何も知識がない状態だと,学習過程の不安定化が見られる.現在はこれに対応するために逆強化学習やディープラーニングの技術を適用した(オ)などが適用され始めている.
(ウ)に最もよくあてはまる選択肢を 1 つ選べ.
機械が試行錯誤することで,取るべき最善の行動を決定する問題を扱うことができる学習方法を(ア)という.(ア)はボードゲームや自動運転,またロボットの歩行動作などに活用されている.代表的なアルゴリズムに (イ)があげられる.(ア)の課題として,主に(ウ)や(エ)などが挙げられる.理論的には無限に学習するが,実世界では全てが限られている.ロボットの場合,無限の試行を繰り返すことができず,損耗し,実験の続行が困難になる.そこで人間側がタスクを上手く切り分けてやさしいタスクからの学習をすることが期待される.また(エ)に関して,例として,2 体のロボット同士で学習を開始させようとすると,お互いに初期状態であるタスクについての何も知識がない状態だと,学習過程の不安定化が見られる.現在はこれに対応するために逆強化学習やディープラーニングの技術を適用した(オ)などが適用され始めている.
ニューラルネットワークの学習には勾配降下法が用いられる.勾配降下法の手順を適切な順番に並べ替えたとき,正しい順番になるものを選択肢から 1 つ選べ.
A.重みとバイアスを初期化する. B.誤差を減らすように重み(バイアス)を修正する. C.最適な重みやバイアスになるまで繰り返す. D.ネットワークの出力と正解ラベルとの誤差を計算する. E.データ(ミニバッチ)をネットワークに入力し出力を得る.
(イ)に最もよくあてはまる選択肢を 1 つ選べ.
画像キャプションとは,ある画像からそこに写っているものの説明を生成する,画像処理と自然言語処理の融合分野である.キャプションは,対象となる画像を(ア)に入力し,そこから得られた特徴を(イ)に入力することで生成することが可能である.