27,324解答

G検定模擬試験set1 - 未解答

    (ウ)に最もよくあてはまる選択肢を 1 つ選べ.

    狭い意味でのディープラーニングとは層の数が深いニューラルネットワークを用いた機械学習である.複数の層を持つ階層的ニューラルネットワークは,1980 年代には(ア)という方法がすでに提案されていたが,現在ほど多くの層を持った学習をすることはできなかった.その理由として二つの理由が挙げられる.一つ目は,出力層における誤差を入力層に向けて伝播させる間に,誤差情報が徐々に拡散し,入力層に近い層では勾配の値が小さくなって学習がうまく進まないという問題が発生したからだ.このことを(イ)という.二つ目は,層の数が多いニューラルネットワークの学習の目的関数は多くの(ウ)を持ち,適切な結合の重みの初期値の設定が難しかった.

    (解説あり)次の説明について,最も関連する事象を選択肢の中から 1 つ選べ.

    層を沢山重ねた深い層であってもうまく学習ができるように出力を入力と入力からの差分の和としてモデリングしたネットワークの枠組み ResNet が提案され高い精度の識別性能を誇っている.

    (イ)に最もよくあてはまる選択肢を 1 つ選べ.

    畳み込みニューラルネットワークに特有の構造として,畳み込み層とプーリング層がある.これらは画像から特徴量を抽出するために用いられる.逆に特徴量(特徴マップ)から画像を生成する際には,それらと逆の操作を行う.代表的な構造として,畳込み層の逆操作である(ア)やプーリングの逆操作である(イ)がある.これらの構造を用いるタスクの例として(ウ)がある.

    (解説あり)以下の文章をよく読み,末尾の設問に答えよ.

    自動運転の実現に向けては,現行の法の枠組の中では公道での実験の可否や,事故が起きた際の責任の所在などの点で捉えづらい面がないかの解釈のすり合わせや,新たな法の策定などが求められている.

    以下の自動運転走行許可の各国・各地域のスタンスに関する説明文として正しいものを選択肢から 1 つ選べ.

    (ア)に最もよくあてはまる選択肢を 1 つ選べ.

    全ての欠損値が完全に生じている場合には,様々な手法を使ってこれに対処することができる.1 つは欠損があるサンプルをそのまま削除してしまう (ア) である.これは欠損に偏りがあった場合には,データ全体の傾向を大きく変えてしまうことになるので使用する際には欠損に特定の偏りがないかを確認して使用することが肝要である. 他の事例としては,欠損しているある特徴量と相関が強い他の特徴量が存在している場合は,(イ) という方法もある.

    (オ)に最もよくあてはまる選択肢を 1 つ選べ.

    ディープラーニングを含めて機械学習において精度の高い学習をするためには,観測データの適切な前処理が必須である.異なるスケールの特徴量を同時に扱えるようにするために,平均を 0 に分散を 1 に規格化する(ア)や,特徴量の線形結合からデータ内の分散が大きくなるような特徴量を得る(イ)などは広く利用されている.また,画像処理の分野においては,減算正規化と除算正規化の処理を行う(ウ)などが前処理として利用され,(エ)などの画像処理に特化したライブラリで行うことができる.また,自然言語処理の分野においては,文章に単語が含まれているかどうかを考えてテキストデータを数値化する(オ)や文章に含まれる単語の重要度を特徴量とする(カ)などがある.

    (エ)に最もよくあてはまる選択肢を 1 つ選べ.

    ニューラルネットワークの学習は,損失関数(コスト関数)の最適化により行われる.そして,その損失関数は学習の目的に応じて決定する.よく使われる損失関数として,回帰問題には(ア),分類問題には(イ)がある.また分布を直接学習する際には(ウ)が用いられることもある.さらに,損失関数にパラメータの二乗ノルムを加えると(エ)となる.

    (ウ)に最もよくあてはまる選択肢を 1 つ選べ.

    画像生成とは,何もない状態,もしくはある入力値に応じて目標の画像を生成する技術である.今最も利用されている画像生成手法は,GAN という生成敵対ネットワークである.特に,あるランダムな数値の入力値をもとに画像生成を行う DC(ア)やある文章から画像を生成する Attention(ア)などが有名である.このネットワークは(イ)と(ウ)から構成されており,(イ)は(エ)を騙すような画像を出力し,(ウ)は(イ)から出力された画像と本物の画像とを分類するようにそれぞれ学習する.このように学習することで,(イ)は適切な画像を出力することが可能となる.

    (エ)に当てはまらない選択肢を 1 つ選べ.

    機械学習の手法は学習の枠組みに応じて主に三つに分類することができる. (ア)は入力とそれに対する出力のペアの集合を学習用データとする手法で,(イ)などが(ア)に含まれる.(ウ)は入力の集合だけから学習を行う手法であり,(エ)などが(ウ)に含まれる.最後に(オ)は,最終結果または連続した行動の結果に対して報酬を与え,報酬ができるだけ大きくなるような行動を探索する手法である.

    (ア)に最もよくあてはまる選択肢を 1 つ選べ.

    ディープラーニングを含めて機械学習において精度の高い学習をするためには,観測データの適切な前処理が必須である.異なるスケールの特徴量を同時に扱えるようにするために,平均を 0 に分散を 1 に規格化する(ア)や,特徴量の線形結合からデータ内の分散が大きくなるような特徴量を得る(イ)などは広く利用されている.また,画像処理の分野においては,減算正規化と除算正規化の処理を行う(ウ)などが前処理として利用され,(エ)などの画像処理に特化したライブラリで行うことができる.また,自然言語処理の分野においては,文章に単語が含まれているかどうかを考えてテキストデータを数値化する(オ)や文章に含まれる単語の重要度を特徴量とする(カ)などがある.

loading!!

loading
続きを表示する
再読み込み

ログイン / 新規登録

 

アプリをダウンロード!
DiQt

DiQt(ディクト)

無料

★★★★★★★★★★