27,310解答

G検定模擬試験set1

(ウ)に最もよくあてはまる選択肢を 1 つ選べ.

教師なし学習の中で有名なものとして,未知の集合をいくつかの集まりに分類させる(ア)という学習方法と,正常な行為がどのようなものかを学習し,それと大きく異なるものを識別する(イ)がある.(ア)は特に(ウ)というアルゴリズムを使用して顧客の分類分けによる DM 配信やレコメンドを行うシステムなどに使用されている.(イ)は(エ)というアルゴリズムを基に,セキュリティシステムなどに使用されている.

(エ)に最もよくあてはまる選択肢を 1 つ選べ.

教師なし学習の中で有名なものとして,未知の集合をいくつかの集まりに分類させる(ア)という学習方法と,正常な行為がどのようなものかを学習し,それと大きく異なるものを識別する(イ)がある.(ア)は特に(ウ)というアルゴリズムを使用して顧客の分類分けによる DM 配信やレコメンドを行うシステムなどに使用されている.(イ)は(エ)というアルゴリズムを基に,セキュリティシステムなどに使用されている.

(ア)に最もよくあてはまる選択肢を 1 つ選べ.

画像の認識では,主に入力から出力に向かう結合のみを持つ階層的なニューラルネットワーク,特に画像などの信号に内在する局所的な特徴が集まって,より大域的な特徴を構成するという構造を反映した,(ア)がよく用いられる.一方,自然言語テキストや動画に代表される構造を持った系列情報を扱うために(イ)が用いられている.特にケプラー大学のゼップ・ホフレイターの提案した(ウ)は必要な文脈情報の長さを適応的に制御することで,時間を遡る誤差逆伝播の可能性を向上させ,画像からの説明文の生成や機械翻訳など,多くの課題に適用されている.実際,2016 年秋に,google 社は google 翻訳に(ウ)を取り入れてアップデートし,非常に高精度な翻訳を提供することが可能になった.

(イ)に最もよくあてはまる選択肢を 1 つ選べ.

画像の認識では,主に入力から出力に向かう結合のみを持つ階層的なニューラルネットワーク,特に画像などの信号に内在する局所的な特徴が集まって,より大域的な特徴を構成するという構造を反映した,(ア)がよく用いられる.一方,自然言語テキストや動画に代表される構造を持った系列情報を扱うために(イ)が用いられている.特にケプラー大学のゼップ・ホフレイターの提案した(ウ)は必要な文脈情報の長さを適応的に制御することで,時間を遡る誤差逆伝播の可能性を向上させ,画像からの説明文の生成や機械翻訳など,多くの課題に適用されている.実際,2016 年秋に,google 社社は google 翻訳に(ウ)を取り入れてアップデートし,非常に高精度な翻訳を提供することが可能になった.

(ウ)に最もよくあてはまる選択肢を 1 つ選べ.

画像の認識では,主に入力から出力に向かう結合のみを持つ階層的なニューラルネットワーク,特に画像などの信号に内在する局所的な特徴が集まって,より大域的な特徴を構成するという構造を反映した,(ア)がよく用いられる.一方,自然言語テキストや動画に代表される構造を持った系列情報を扱うために(イ)が用いられている.特に現代人工知能(AI)の父として知られているユルゲン・シュミットフーバーとケプラー大学のゼップ・ホフレイターの提案した(ウ)は必要な文脈情報の長さを適応的に制御することで,時間を遡る誤差逆伝播の可能性を向上させ,画像からの説明文の生成や機械翻訳など,多くの課題に適用されている.実際,2016 年秋に,google 社は google 翻訳に(ウ)を取り入れてアップデートし,非常に高精度な翻訳を提供することが可能になった.

2012 年に開催された一般物体認識のコンテスト ILSVRC(ImageNet Large Scale Visual Recognition Challenge)において,深い構造を持つ CNN が,従来手法の分類性能を大幅に上回って以来,ディープラーニングが画像認識に盛んに用いられるようになった.ディープラーニングの画像認識への応用先として正しい組み合わせを選択肢から 1 つ選べ.

(ア)に最もよくあてはまる選択肢を 1 つ選べ.

クラス分類の領域では,CNN という沢山の層を重ねて,深い階層構造をした手法によって研究が進められていて,従来の手法よりも精度の高い認識や分類が可能となった.しかし,沢山の層を重ねた結果,学習に用いられるパラメータの数が膨大となり,学習が上手く進まないという問題が生じていた.その問題を解決するために提案されたのが(ア)である.(ア)は,入力層から出力層まで伝播する値と入力層の値を足し合わせたモデルで,この方法によって,入力層まで,勾配値がきちんと伝わり,今では 1000 層といったかなり深い構造でも学習が可能となった.実際,2015 年の ILSVRC で(ア)は人間の成績を上回る成果をあげている

(解説あり)(ア)に最もよくあてはまる選択肢を 1 つ選べ.

物体検出とは(ア)である.一方物体セグメンテーションとは(イ)である.

(イ)に最もよくあてはまる選択肢を 1 つ選べ.

物体検出とは(ア)である.一方物体セグメンテーションとは(イ)である.

(ア)に最もよくあてはまる選択肢を 1 つ選べ.

画像キャプションとは,ある画像からそこに写っているものの説明を生成する,画像処理と自然言語処理の融合分野である.キャプションは,対象となる画像を(ア)に入力し,そこから得られた特徴を(イ)に入力することで生成することが可能である.

ログイン / 新規登録

 

アプリをダウンロード!
DiQt

DiQt(ディクト)

無料

★★★★★★★★★★