27,310解答

G検定模擬試験set1

(ク)に最もよくあてはまる選択肢を 1 つ選べ.

線形モデルとは,(ア)を含む項の線形結合で,(ア)を含んだ数式の出力値は(イ)と呼ばれる.この線形結合で,特に(ア)も(イ)も一次元のデータの場合は,y = b0 + b1 * x と表される.こういったモデルを単回帰モデルと呼んだりもする.この数式において,各項の係数(例えば b0, b1)を(ウ)と呼び,このモデルを用いてテストデータを学習し,測定した実データを推定する.注意点として,(イ)が連続の値を取り扱う場合(エ)と呼ばれるが,離散の値を取り扱われる場合は(オ)と呼ばれ,それぞれ名称が異なる.ただ,実際のデータを扱うときに,(ア)が 1 次元であることはほとんどなく,2 次元以上になることが一般的である.このような場合,(ア)の次元数分だけ,係数パラメータを増やして,モデルを拡張する必要がある.このように(ア)が 2 つ以上の場合を(カ)モデルと呼び,各項の係数パラメータを(キ)という.またモデルによって出力された値と実際の測定値の誤差を(ク)という.この(ク)を用いて係数パラメータを推定する代表的なアルゴリズムに最小二乗法と最尤推定法がある.

(解説あり)最小二乗法の説明として最も適切な選択肢を 1 つ選べ.

(解説あり)最尤推定法の説明として最も適切な選択肢を 1 つ選べ.

最小二乗法の説明として誤った選択肢を 1 つ選べ

ディープラーニングの使用の注意点として,最も適切な選択肢を 1 つ選べ.

(ア)に最もよくあてはまる選択肢を 1 つ選べ.

ディープラーニングの学習の目的は,損失関数の値をできるだけ小さくするパラメータを見つけることである.このような問題を解くことを(ア)という.このパラメータを見つけるアルゴリズムとして有名なのは(イ) である.ただ,(イ)は対象の関数の形がある分布や方向に依存すると非効率な経路でパラメータを探索してしまい,学習に時間がかかってしまうというデメリットがある.そこで,現在では(イ)の欠点を改善するために(ウ) などのアルゴリズムが使用されている.

(解説あり)(イ)に最もよくあてはまる選択肢を 1 つ選べ.

ディープラーニングの学習の目的は,損失関数の値をできるだけ小さくするパラメータを見つけることである.このような問題を解くことを(ア)という.このパラメータを見つけるアルゴリズムとして有名なのは(イ) である.ただ,(イ)は対象の関数の形がある分布や方向に依存すると非効率な経路でパラメータを探索してしまい,学習に時間がかかってしまうというデメリットがある.そこで,現在では(イ)の欠点を改善するために(ウ) などのアルゴリズムが使用されている.

(解説あり)(ウ)に最もよくあてはまる選択肢を 1 つ選べ.

ディープラーニングの学習の目的は,損失関数の値をできるだけ小さくするパラメータを見つけることである.このような問題を解くことを(ア)という.このパラメータを見つけるアルゴリズムとして有名なのは(イ) である.ただ,(イ)は対象の関数の形がある分布や方向に依存すると非効率な経路でパラメータを探索してしまい,学習に時間がかかってしまうというデメリットがある.そこで,現在では(イ)の欠点を改善するために(ウ) などのアルゴリズムが使用されている.

(ア)に最もよくあてはまる選択肢を 1 つ選べ.

機械が試行錯誤することで,取るべき最善の行動を決定する問題を扱うことができる学習方法を(ア)という.(ア)はボードゲームや自動運転,またロボットの歩行動作などに活用されている.代表的なアルゴリズムに (イ)があげられる.(ア)の課題として,主に(ウ)や(エ)などが挙げられる.理論的には無限に学習するが,実世界では全てが限られている.ロボットの場合,無限の試行を繰り返すことができず,損耗し,実験の続行が困難になる.そこで人間側がタスクを上手く切り分けてやさしいタスクからの学習をすることが期待される.また(エ)に関して,例として,2 体のロボット同士で学習を開始させようとすると,お互いに初期状態であるタスクについての何も知識がない状態だと,学習過程の不安定化が見られる.現在はこれに対応するために逆強化学習やディープラーニングの技術を適用した(オ)などが適用され始めている.

(イ)に最もよくあてはまる選択肢を 1 つ選べ.

機械が試行錯誤することで,取るべき最善の行動を決定する問題を扱うことができる学習方法を(ア)という.(ア)はボードゲームや自動運転,またロボットの歩行動作などに活用されている.代表的なアルゴリズムに (イ)があげられる.(ア)の課題として,主に(ウ)や(エ)などが挙げられる.理論的には無限に学習するが,実世界では全てが限られている.ロボットの場合,無限の試行を繰り返すことができず,損耗し,実験の続行が困難になる.そこで人間側がタスクを上手く切り分けてやさしいタスクからの学習をすることが期待される.また(エ)に関して,例として,2 体のロボット同士で学習を開始させようとすると,お互いに初期状態であるタスクについての何も知識がない状態だと,学習過程の不安定化が見られる.現在はこれに対応するために逆強化学習やディープラーニングの技術を適用した(オ)などが適用され始めている.

ログイン / 新規登録

 

アプリをダウンロード!
DiQt

DiQt(ディクト)

無料

★★★★★★★★★★